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Abstract-The shear-flexural-twist vibrations in rectangular AT-cut quartz plates with partial electrodes are
considered and the influences of metalic electrodes on the resonance frequency and on the resonance
frequency temperature dependence are calculated. Different elastic stiffnesses were supposed in the plated
and unplated part of the plate and in this way the influence of piezoelectricity is considered. The influences of
mass loading and the length of electrodes have been calculated and examples of computed results are given.

I. INTRODUCTION
The piezoelectric AT-cut quartz resonators are the most frequent type of piezoelectric resonators
today. They are used in the frequency range from 0·8 to 200 MHz and work on the principle of the
thickness-shear mode of vibration. Increasing requirements concerning especially the
temperature dependence of the resonance frequency of these resonators make it necessary to
know in detail the influence of various parameters on the resonance frequency. First of all it is
necessary to determine with sufficient accuracy the influence of the shape and dimensions of the
resonator and the layout, shape and dimensions of electrodes. In the paper the possibility of
theoretical solving of this problems is indicated for the case of perpendicular resonators with
perpendicular electrodes.

The two-dimensional approximate method indicated by Mindlin [I] are taken into account
when the relations describing vibrations of AT-cut quartz plates are derived. There is also
suppose in the paper that the thickness-shear vibrations of boundered AT-cut quartz plates are
influenced by elastic coupling between thickness-shear and flexural vibrations [2]. The equations
of motion of coupled flexural and thickness-shear vibrations AT-cut resonators are therefore
considered [3].

Mindlin and Gazis [2] and Mindlin and Spencer [3] considered otherwise boundered but not
plated quartz AT-cut resonators. Relations which they derived are suitable for accurate
resonance frequency calculation only in the case that the vibration are excited by an alternating
electric field which is produced between electrodes perpendicular to the X2 axis and separated
from the plate by a sufficiently large air gap.

Mindlin[4] derived the equations of motion and the frequency equation where the mass
loading given by electrodes deposition was considered. Byrne, Lloyd and Spencer [5] and Lee
and Spencer[6] went from Mindlin's paper out and studied the vibration of partially AT-cut
quartz plates. They took into account the influence of electrodes the same way as Mindlin. In
comparison with Lee and Spencer's paper[6] in this paper the piezoelectric stiffening and the
temperature dependence of the resonance frequency of the plates with partial electrodes are also
considered.

2. DESCRIPTION OF VIBRATIONS AND THE FREQUENCY EQUATION
OF AT-CUT RESONATORS WITH PARTIAL ELECTRODES

The influence of infinitely thin and perfectly conducting electrodes on the resonance
frequency of the resonator vibrated in thickness shear mode was studied by Lawson [7]. He
pointed that with regard to piezoelectric properties of the plate the deformation on the surface of
the plate is non zero and that the value of the deformation is a function of the air gap between the
electrodes and the surface of the plate. Lawson took into account the influence of the air gap in
the frequency equation by introducing effective thickness of the plate. The effective thickness is
generally large than the real thickness of the plate and is equal to the real thickness only if the air
gap is infinitely large.
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The extreme cases of the distance of electrodes from the surface of the plate may be
respected in the equations of motion and in the frequency equation also by substituting suitable
elastic stiffnesses.

As may be seen from paper [7] the zero deformation is on the surface of the plate in the case
of an infinitely large air gap. This situation corresponds to the conditions considered when solving
piezoelectrically stiffened vibrations, where in the case of thickness-shear vibration the value

(I)

is substituted for the elastic stiffness C66 in the equations of motions [8,9]. In equation (1) c;., is
the elastic stiffness measured at a constant electric field intensity E, cz, is the elastic stiffness
measured at a constant electric displacement D, e26 is piezoelectric modulus corresponding to the
electric field in X2 axis direction and thickness-shear deformation in the plane XIX2 and E22 is
permitivity in the direction of X2 axis.

In case of a non zero air gap and short-circuited electrodes (this may be approximately
fulfilled also by electrodes shunted by small resistance) the non zero deformation give rise to an
electric charge on the surface of the plate which compensates the corresponding components of
the electric field so that in its plated part the plate behaves as piezoelectricaly unstiffened and
elastic stiffness C66 has the value c;".

If we consider these two extreme cases then we may take into account piezoelectric
properties of partially plated resonators so that in the unplated part of the plate we shall express
the elastic quality by elastic stiffness cZ, and in the plated part of the plate by elastic stiffness c;".
Let us suppose that the AT-cut quartz plate is plated and orientated in an orthogonal system of
axes in a way shown in Fig. 1. Then we may write the equations of motion if the piezoelectric
stiffering and mass loading are considered in similar form as in the papers [3] and [6] but with
diperent elastic stiffnesses in unplated and plated part of the plate.

Unplated part

(2)

Plated part (the quantities are marked with prime)

(3)

where R is mass loading of the plated part of the plate defined as the ratio of the mass per unit
area of both electrodes to the mass per unit area of the plate

p'h'
R=-

ph

2h L-J --,I-- J

Fig. 1. The position of the rectangular AT-cut quartz plate with an electrode strip in the orthogonal coordinate
system.

(4)
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p' is the density of electrodes and h' is the total thickness of both electrodes.
The correction factors K. and KI in equations (2) and (3) are given by relations

2 TT
2

- 2 TT
2 1+3R

K I =12' K I =12 (l + R)'1.· (5)

When a uniform electric field isimpressed over the electrode platings and when at the boundaries
of the plated and unplated portions of the plate the conditions given in [6] are fulfilled then for the
plated part of the plate we may similarly as in [6] suppose the solution of equations (3) in the form

U2 = CiLh sin l.xl +A2h sin l2XI) cos (X3 e/w'

- - - - - -I""l{J. = (BI cos {IXI +B2cos {2XI) cos (X3 e

in unplated part of the plate we may consider the solution of equations (2) in the form

(6)

X= (h

u2=[A llh sin{bl-a)+A I2h cos{l(xl-a)

+ A 21 h sin {2(XI - a) +A 22h cos MXI - a)] cos (X3 elw
' (7)

l{J1 = [B II cos {1(Xl- a)+ B 12 sin {I(XI- a)+ B21 cos {2(Xl- a)+ B22 sin 6(x,- a)] cos (X3e/wt

where U2(Xh X3) is the deflection of the plate element and l{Jbl, X3) is the rotation of a line
element about X3 axis.

From the requirement of the continuity of the displacements and stresses at the boundaries of
the plated and unplated part of the plate (XI = ±a) it follows that

Then the frequency equation may be written in the same form as in Lee and Spencer's paper [6]

all al2 0 cPl 0 cP2
a21 a22 1 0 1 0

lal =
a31 an (71 0 (72 0

=0 (8)
a41 a42 0 -at 0 -a2
0 0 a53 a54 a55 a56
0 0 a63 a64 a65 a66

Als,o the relations for the calculation of the components of the frequency equation (8) are given in
paper [6] but for the calculation of the quantities given below it is necessary to use the following
relations

<bt = ~h cPt ={.h

i=(h

• _ ;'55

;'55 - 3K- 2 II
IC 66

a* =!!
h

• _ ;'11
;'11 - 3-6 2 II

AI C66

• ;'S5

;'ss = 3K 2 D
IC 66

d* = 1- a
h

where the symbols used here are the same as in Lee and Spencer's paper[6].
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Table I. Values and temperature coefficients of the elastic stiffnesses used in the calculation of resonance frequencies
and the resonance frequency temperature dependence (taken from [11-13])

Va1uea for D » constant Values for E : constant The same values
for

0
7:

111 E 7:(1) E liI'I constant
A.!" C41' C," D : constant 7: (31CA,. CA",

Tc121 CAl"

109 I'l m-2 10-6 /00 109 Ii m-2 10-6 /01J ib'-9 /01J2 10-12 ;00)

11 87.49 -46.8 86.74 -44.) -107 -70
12 6.2) -2975.0 6.99 -2690.0 -)050 -1260
1) 11.94 -550.0 11.91 -550.0 -1150 -750
14 -18.09 100.0 -17.91 117.0 -48 -590
)) 107.2 -160.0 107.2 -160.0 -275 -250
44 57.98 -177.4 57.94 -175.4 -216 -216
66 40.6) 177.7 )9.88 187.6 118 21

3. THE TEMPERATURE DEPEDENCE OF THE RESONACE FREQUENCY
OF PARTIALLY PLATED AT-CUT QUARTZ PLATES

The possibility to use the frequency equation of coupled flexural and thickness shear
vibrations derived by using two dimensional approximation method was given in paper [10] when
unplated AT-cut quartz plates were considered. The same way has been also used in the
calculation of the resonance frequency temperature dependence of partially plated AT-cut quartz
resonators. The basic physical constants and dimensions of the plate (this is c:;:', c~, /'11, /'55, p,
2h, 21) were calculated first of all for a chosen number of temperatures 1'; according to the
relations

(9)

where [yh, is the value of the quantity at the temperature Tl, [yho is the value of the quantity at
the temperature To and TyCll, Ty<2l, Ty(3) are the first, second and third order frequency
temperature coefficients.

The values of the elastic stiffnesses temperature coefficients used in the calculation were
taken from papers [11], [12] and [13] and are shown here in Table 1.

The temperature dependence of the resonance frequency has been presented by means of the
temperature dependence of the frequency constant 14 given by the relation

(10)

As the resonance frequency is given as the ratio of the frequency constant K, and the thickness
of the plate h, the frequency constant is divided by the coefficient expressing the change of the plate
thickness depending on temperature

- - 1
[K,h. = K'--...3------

1+ :2: Th<n)(1'; - To)"
n=1

(11)

4. RESULTS OF CALCULATION

The AT-cut quartz square plate with orientation yxl 35°18' was considered in the calculation.
The length over thickness ratio of the plate was chosen 20. The influence of the mass loading R
and the length of the electrodes 2a was considered in the ranges R =0-0,04, alh = 2,5, 5, 7,5, 10.

First of aU the dependence of the frequency constant on the mass loading R was studied. The
calculated dependence for alh = 5 and 10 is given in Fig. 2.

For the comparison of the theoretical and measured results is better to use instead of the mass
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Fig. 2. Calculated dependence of the frequency constant Kf of the rectangular AT-cut quartz plate with
orientation yxl 35°18' on the mass loading R.

loading R the plate back A.. The plate back A. is given by relation
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(12)

where Kin is the frequency constant of the unplated plate. For the same value of R the plate back
A. is function of the length of the electrodes. The influence of the electrode length upon the plate
back A. is seen from the Table 2 where the calculated and measured values of the plate back of
AT-cut quartz square plates with orientation yx 35°17' and nominal resonance frequency
10·3 MHz is given for two length of the electrodes. From Table 2 is also seen good agreement
between measured and calculated results.

The influence of the electrodes on the resonance frequency of piezoelectric bars and AT-cut
quartz plates was experimentally studied by Suk[14]. He considered only circular AT-cut quartz
plates. But it is possible to state that the comparison of the character of the theoretical results for
AT-cut square plates and experimental results obtained for AT-cut circular plates is very good.

The calculated temperature dependence of the resonance frequency is given in Fig. 3 for
alh = 5 and 10 and R = 0 and 0·04. It was observed during calculation that the mass loading
smaller than R < 0·01 does not have visible influence on the temperature dependence. Only for
R ;;?: 0·03 the influence of the electrodes is expressive. The calculated temperature dependence of
the resonance frequency has the same character as the temperature dependence obtained
experimentally by Miller [15] and Spencer [17].

5. CONCLUSIONS

An attempt of a more accurate theoretical expression of the influence of electrodes on the
resonance frequency partially plated AT-cut quartz resonators was shortly described in the

Table 2. Calculated frequency constants and calculated and
measured plate back /),. of the AT-cut quartz square plates

l/h = 43·75 with orientation yx/35°17' and R = 0·0066

The length of Kj f!.

the e] eo trntiea (cnlc11 1nterl) /%/

alt /I<H7, rom/ cfllculn tp-d measured
fmm/

unpIn ted 11;65.904

12.5 11l50.HOO 0.920 0.95

1A.75 1647.997 1.091 1.28
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Fig. 3. Calculated resonance frequency temperature dependence of the rectangular AT-cut quartz plate for
the different mass loading R.

paper. Also a possibility was indicated to use this more accurate expression for the calculation of
the influence of electrodes on the temperature dependence of the resonance frequency. In both
cases not only the mass loading but also the piezoelectric stiffering were taken into account. The
preliminary comparison of the results calculated for the AT-cut square resonators with the
results obtained experimentally for the AT-cut circular resonators gave a good qualitative
agreement. It may be supposed that the described theoretical expression of the influence of
electrodes on the resonance frequency of AT-cut quartz plates will make it possible for designing
of resonators to respect more accurately the influence of electrodes.
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